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1 Abstract

We describe an algorithm which gives a natural basis for the power series solu-
tions for a large class of polynomial coefficient ordinary differential equation of
homogeneous order.

2 Introduction

We describe an algorithm which gives a natural basis for the power series so-
lutions for a large class of polynomial coefficient ordinary differential equation
of homogeneous order. By a natural basis we mean that any element in the

)
nullspace can be written in the simple form f(z) = Zo<j<n_1 IL;!@mﬂej(a:)

(where DU) = ad—;;) and where ¢;(z),0 < j < h — 1 is the basis. This form will
be valid for a large class of polynomial coefficient ordinary differential equations
that we consider.

In contrast, the standard method for describing a basis for even the sim-
plist linear homogeneous order ordinary differential equation EOSkShaky(k) =0
(where ay, are constants) is written in a form (using roots of the characteristic
polynomial) which cannot readily be used to describe an arbitrary element of
the nullspace.

In fact we solve a more general problem which deals with noncommutative
linear operators (of shift type) defined on a linear space with countably infinite
basis. A special case of this more general problem and its solution will be that
described above.

A variety of books and papers discuss solutions of other special cases of
linear polynomial coefficient ordinary differential equations. To a large extend
these special cases have solutions which can be expressed in closed form (as
is the standard method for describing a basis of solutions to linear constant



coefficient ordinary differential equations). For a survey of general methods see,
for example, [1], Ch.1-5;[2],Ch.3; [5],Ch.3; and [3].

3 A Nullspace Problem on an Infinite Dimen-
sional Linear Space

Let U be a linear space with basis ux, k € N ={0,1,2,...}. SoU = Span{us} =
{Zkenokuklar € R} (where R is the field over which U is defined) . By a basis
we mean that Spenagur = 0 implies that a, = 0 for all . We also define the
projection operators m; : U — R by mj(Epenarur) = a; (for j € N). The =,
are well defined since the u, form a basis. So we have

9= N32om;(9)u;

forgeU.

We consider the shift linear operators pu/ : U — U (0 < j < h) defined by
1 (SrpeNarur) = LpeNaroj kuk—; (where u; = 0 for ¢ < 0 and where o1 € R).
(Note that these operators do not commute unless 0,0 k—j = 05,0 g~ for all
i\ 5, k.

lee problem we set ourselves is: Given the linear operator P(u) = p" —
To<j<n—16i447, ¢; € R which operates on U find a basis for ker(P(u)) = {f €
UIP(u)f = 0},

To solve this problem we will require that

Ok hotn # 0

for k > 0. We also need to use two auxilliary linear spaces. One of these spaces,
V', will have basis v,k € N and linear operators 7 : V — V given by
V) (Shenbrtk) = SheNbb0y,j4+kVj+k- (1)

for 0 < j < h. The other auxiliary linear space W having basis ay, ..., ap—1 is
defined as follows:
Let ¢: V — W = Span{aq, ..., @h-1 } where

$(v;) = a0 < j < h—1, | 2)

o -
B(vn) = Togjgn-165 72 0(0;) = Bosjsn-16 57 ) (3)

by 3

and for £ > 1 we recursively define

o s
H(Vhtr) = Yo<j<h—1Cj BIYE (05 k). (4)
Oh,h+

1

Hence for k € N,0 < j < h — 1 there exist constants dg,; so that

$(vr) = Togich—1dk0. (5)



We extend the meaning of m to W (for 0 < k < h—1) by setting 7, (Zo<j<n—1bj0;) =
by,
Then by (2) we have

di,j = Te(d(v5)) = Ok,j (6)

for 0 < j,k < h — 1 where dj ; is the Kronecker 6.
Defining P(v) = v* — Zosjsh_lcjuj we note that by our construction we
have :
$(P(v)uk) = (V" ~ Togjch-160" Jog = 0. (7)
for k > 0.
Define
ej = Lglodk,juk

(for 0 < j < h — 1) and note that by (2) and (6) we have
7Tk(€j) = ék,j,

Our main theorem is:
THEOREM:

i) The e; are linearly independent and P(u)e; =0for0 <j <h -1,

ii) for f € ker(P(u)) we have f = X123 (m; f)e;,

and
i11) ker(P(u)) has dimension h.

Before proving our theorem we note the following calculation which relates
the operators P(u) and P(v) via a tensor product on the linear spaces U and

For 0 < j < h we have

(W )T uk @k = L7200,k k-3 OV = L2 ;07 kUk— @Vk = T2007, bt Uk®
Vkts = Lotk ® 04,k4§ V4 = (1 ® ¥9) P2 up ® Vk.

More generally we have

(Q(p) @ 1)E2 jup ® v = (1 ® Q(v))E2 quk ® vy where Q(u) = Eygébj,uj
and Q(v) = Z}";lbjuj for b; € R.

PROOQF of THEOREM:

First we show that P(u)e; = 0 for 0 < j < h — 1, then we show that every
solution can be written in the form S} (m; f)e; = 0.

Now (P(1)®¢)ZL que®@Uk = (18¢) 552 qup®P(v)vg = Lpl qup @ P (V)vg =
0 by (7).

Hence

0 = (P(1) ® 1) Eour ® pvg = (P(u) @ 1) S5 ur ® (S50 dn joy) = (P(u) @
1)2?;0163' ® o = 0 which implies that P(u)e; =0for0 <j<h-~1

since (2) implies that ag, ..., @,—y are linearly independent.



Now we show that any solution f can be written in the form E olmif Je;
Before proceeding we need two new notations. For g = Ek_obkuk el (g 76
0) we write

lt(g) = bm
if by, £ 0 and if by, = 0 for & < m. If It(g) = by, we write

slt(g) = m.

It stands for "least term” and slt stands for ”subscript of the least term”.
Let f € ker(P(u)) and set

f f- (7T7f)

We show that 7 (f) = 0 for all k.

For k € {0,1,...,h — 1} we have mf = mpf — E?;&(ﬂjf)wkej =
¥ =0 H(1f)0k; = 0. So f = B, agug where ar € R. Now either f =
lt(f) = q,, some m > h. R

So we suppose, by way of contradiction that It(f) = am, m = h,am # 0 so

mf —
0o

or

that f = X Gk
CLAIM: It(P(p)f) # 0. (From which we get the contradiction f ¢ ker(P(u))).
Now

P(u)f = (u" — To<j<n-16i17) (DL 0ktk) = QP + 1 (B2, 4 Qi) —
(Zogj<n-16i4" )amtm — (Sogj<h— 1C.7/"J)(Ek-_m+la‘kuk) =

AmO h,mUm b+ 2oy 1 kT b,k Uk~ — E;L;(}Cjamgj,mum—j_z_?;(} 2R 1600k Uk —j -

So Slt( __7n+1a,k0'hk’l.ll;c h)>m—+—1—h>m—h,

slt(Eh_o CjUmOimUm—j) = m— (h—1) >m — h, and

slf(Z’Lol o m+1cjaka] WUk—j) > (m+1)—(h—1)>m—h.

chce (P () (3232, arUK)) = QO h,m # 0.

Lastly, since the e] are linearly independent and ker(P(u)) = span{e;|0 <
7 < h—1} we have that (ker(P(u))) has dimension h.

END of PROOF.

The iteration process described by (3) and (4) can be used to find d;x by
using a matrix product of A by h matrices.

Let

90,k
—
00 00’hk+h
c Ul,kj:l
10'hlc+h
0 0 02,542

Mk+h) = : 20 h,kth

[ =)
-0 O
o o o
(=]
o

Then

(D(Vkt1), D(Vk2), -y D(Vk4n)) = (g, 1, -y an1) M (h) - - M(k—1+h) M (k+h) =



dpy10 0 digno
(o, 1,y ap—1) : : :

dit1,h—1 *  Okghh—1

4 Application to Polynomial Coefficient ODE’s

Let R[z, D] denote the ring of polynomials in z and D = %. The elements of
R[z, D] act as operators on RJ[[z]] the ring of formal power series in z.
Rz, D] is noncommutative since

Dz=1+xzD (8)

which follows from the fact that for f € R[[z]] we have (Dz)f = D(zf) =
fHaD(f) = (1+aD)f. This algebra and its generalization to partial differential
equations are called Weyl Algebras.

We will call z¥D™,(k,m € N) a reduced term of Rz, D]. By (8), any term in
R[z, D] can be written as a linear combination of reduced terms. In particular
we will assume that any polynomial P{zx, D) € R|z, D] is written as a linear
combination of reduced terms.

For j € Z define F; = Spang{zD™|q —m = j}. Then Rz, D] = > Fj.

So we will write any polynomial in R[z, D] in the form

P(e, D) = Py(w, D) — Yogj<n-1P;(2, D)

where P;(z, D) € F;.
We are now interested in how an arbitrary element

Qj = Z[q_m:j]bj,q,qul)m eF;

(for j € Z) operates on R[[m]]
Now

mq(mk) = gtk

k!

D76 = =y

zF=™ if (k —m) € N,
and
D™ (%) = 0 if (k —m) ¢ N.

Using the notation ¢(m, k) = (k_’?in)! if (k —m) > 0and c¢(m,k) =0if (k—
m) < 0 we get that

29D™(z%) = c(m, k)z"—™Ta,

So
Qj (mk) = Z[m:k—j]bj,kz,mc(ma k)mk—j .

ot



Hence there exist constants o x = Sim=k—j)bjkmc(m, k) € R so that

Qj(a*) = ajpz® .
REMARK: Various properties of the general Weyl Algebra are discussed in
Chapter 1 of the excellent book [4].

5 An Algorithm for finding a Basis for ker(P(z, D))

Let P(z,D) = Py(z,D) — Zogj<n—1Pj(z, D) where oj are defined so that
Pj(z,D)z* = ¢; ,x*7 for P;j(z, D) € F;. We also require that and op ik # 0
for k > 0.

Let U = Span{uy}, P(u) = p"—Togj<n—14 where p? (552 ganu) = L2505,k 0kUk—j
and where 0, 5, are defined above.

The algorithm in Section 3 shows how to construct a set of h solutions
e; = Eongmdk’juk,O < j < h-—1so0 that

i) e; are linearly independent and P(u)e; = 0,
it) any f € ker(P(p)) can be written in the form f = Zo<j<n—1(m;f)e;.

Another conclusion from Section 3 is that
ker(P(u)) has dimension h.

The algorithm also shows how to compute the di ; via a matrix product.
Consider the R linear isomorphism ¥ : U — R[[z]] given by

U(ug) = zF,

and ‘
W(MJ) = Pj(mv D)

forkeNand0<j<h.
So

U(P(p)) = ¥(u" — Sogjcn-1p7) = Pu(z, D) ~ Bo<j<n—1P;(x, D).
Then for g € U we have

U(P(u)) = ¥ (P(1)¥(9)

and we have that
U : ker(P(u)) — ker(P(z, D))

is one to one and onto.
Set
ej(z) = U(e;) = 5320y ;"

for0<j<h-1



Since Q;—,Jl( 52 062" |0 = a; we see that
) 121%)
Y(m;f) = 7 (TNl
for any f e U.
Hence

ker(P(z, D)) = {f(z) € R[|z]]|P(z, D) f(z) = 0} has dimension h and the
algorithm in the Section 3 shows how to compute a basis ¢; (and consequently
e;(z)) having the property that if f(z) € ker(P(z, D)) then

D@ (f(z))lo
4!

REMARK: The construction in Section 3 should extend to give a basis for
the case where p" — ¥1<j<p—1¢;47 and I < 0,h > 0. The case (where o pk = 0
for some k£ > 0) would require a more delicate analysis than the one in this paper
since the iteration process would have to be significantly modified.

REMARK: In addition to giving a survey of methods used in analysing and
solving ordinary differential equations, the paper [3] also gives an extensive
bibliography.

f(z) = Bogj<n—1 ej(z).
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